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Abstract. The non-linear Boltzmann equation in the presence of external forces is con- 
sidered. Exact inhomogeneous homoenergetic solutions are found by means of a non- 
isotropic generalisation of Nikolskii's transform. In particular, an interesting oscillating 
behaviour is obtained in the presence of an external time-independent force. For small 
values of the vorticity this oscillation becomes a sharp pulsation. 

We study a gas of particles in d dimensions, in the presence of an  external force per 
mass unit a(r ,  t ) .  The non-linear Boltzmann equation (NLBE)  that governs the temporal 
evolution of the distribution function f ( r ,  U, t )  is 

(: + * v r + a * v " f (  r, U, t ) = Nf; f I 1 (1) 

where B [ f , f ]  is the bilinear term associated with elastic scattering collisions: 

- f ( r ,  0, t l f ( r ,  U1 9 t ) I .  (2) 

Here (T is the differential cross section for the intermolecular collision. The incoming 
and  postcollisional velocities are related by 

(3) 

(4) 

U' = t (  u + U,) + f l u  - U , / G  

1 -I - z ( u +  U,) - f l u -  u,ln*. 

In recent years, the discovery by Bobylev (1976) and Krook and  Wu (1976) of an 
exact particular solution of the spatially uniform N L B E  for Maxwell molecules has 
caused a revival of interest in this equation. Since then, significant progress has been 
achieved in the study of the space-independent Boltzmann equation (Ernst 1981, 
Bovylev 1984). In contrast, the quest for exact space-dependent solutions has not been 
so successful. Nikolskii (1964) discovered a transformation that makes it possible to 
construct space-dependent solutions of the N L B E  without external forces for Maxwell 
molecules, starting from spatially uniform solutions. Recently Cornille (1986a, b )  
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applied this transformation to a gas with power-law intermolecular forces. These 
solutions describe an expanding or  collapsing gas, unless subject to particular time- 
dependent external forces. In  the present paper we show that, by means of a non- 
isotropic generalisation of Nikolskii's transformation, it is possible to define explicit 
space-dependent solutions of the N L B E  which remain confined in the presence of 
realistic time-independent external forces. 

We look for a solution of the N L B E  such that the spatial variable r appears in the 
distribution function only through the bulk velocity 

u(r, t )  =- f ( r ,  U, r ) u  do. 

Then we writef(r, U, t )  = f (c ( r ,  U, t ) ,  t ) ,  with c(r, U, t )  = U -  u(r, t ) .  It is easy to see that 
for this particular solution the moments formed with the velocity c may be functions 
of time but not of space coordinates; namely 

,- 

density 

temperature (7 )  

stress tensor (8) 

q = -  f(c, t ) c 2 c d u  
2 ' I  heat flux (9) 

are space independent. The corresponding balance equations of mass, momentum and 
energy are 

* + p v .  U = o  
d t  

du  -+ (U V ) u  = a 
d t  

d T  2 -+- Tr(MA) = 0 
d t  pd 

with 

being the symmetric rate-of-strain tensor. In  order to make the previous balance 
equations compatible with each other, V - U in (10) must be space independent. Thus, 
we consider a flow for which the bulk velocity is an affine function of the position 
u(r, I )  = C ( f ) r + g ( t ) .  Now, in order to solve the energy balance equation (12) in 
closed form, we suppose that only dilatation effects can occur, namely A, , ( t )  = A ( [ )  a,,. 
Then the density and the temperature become 
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with 

P (  t )  = exp lo' A( t ' )  dt '  

From the momentum balance equation (1 l ) ,  we see that the most general irrotational 
force compatible with this homoenergetic dilatation flow (Truesdell and Muncaster 
1980), is 

1 d2P  1 
a(r, t )  =- 7 r + a U 2 r + b ( t )  

P d t  P 
where U a time-independent skew tensor. Now the momentum balance equation ( 1  1 )  
can be explicitly solved: 

where the auxiliary matrix Z ( t )  is given by 

Z( t )  = ,6 ( t )  exp ( U  lo' p ( d t ') 
Let us restrict this particular solution further by means of a generalised Nikolskii 
transformationf(r, U, t )  = F(q(r ,  U, t ) ,  t )  with q(r,  U, t )  = Z ( t ) [ u - u ( r ,  t ) ] .  Considering 
an  arbitrary inverse-power-law intermolecular potential Va r - P  such that (Ernst 1981) 

X(C0S 0) (20) 2(1  - d  I / @  u(~1, COS e) = U 

the NBLE for this particular class of solution is 

3 .  (21) - d F  - - p ( 2 - P ) ( d - l  ) / P  B [  F F] 
d t  

The auxiliary matrix Z( t )  satisfies the orthogonality condition ZZT = P'I. Therefore 
the change of variables U + q and n̂  + Zn^/P renders the collision term unaltered, except 
for the P-dependent factor in (21). Finally, by redefining the time scale 

= lo' p(t')(2-P)(d-l)/& d t '  (22) 

we reduce the complete N L B E  to the space-independent one without external forces 

d F  
dT 
- = B [  F, F]. 

This equation represents one of the main results of the present paper, namely that a 
non-isotropic generalisation of the Nikolskii's transform makes it possible to build up  
a general homoenergetic dilating solution of the N L B E  ( 1 )  from a space-independent 
one. Calculating the first moments of q, we obtain the usual conservation laws of 
mass, momentum and energy for a homogeneous gas: 



3914 R 0 Barrachina 

Significant progress has been achieved in the study of the relaxation of the solution 
of the N L B E  (23) to the equilibrium Maxwellian distribution 

Many existence and uniqueness problems have been solved for this relaxation process, 
and some exact analytical solutions are known. Actually, the explicit solution of the 
N L B E  (23) is presently known for two kinds of interactions: the Maxwellian gas 
p = 2(d - 1) (Ernst 1981), and  the very hard particle (VHP)  model (Hendriks and Ernst 
1983). This VHP model is defined by the unphysical choice p = -2( d - 1). The scattering 
cross section (20) increases linearly with the relative velocity, whereas in real systems 
it is bounded by a constant. 

In 1976 Bobylev used a Fourier transformation in velocity space and found a 
particular exact solution for Maxwell molecules. This solution-nowadays called the 
B K W  solution-was simultaneously and independently discovered by Krook and Wu 
(1976) by means of a similarity technique. It is 

2 o s  v ( 0 ) s -  
d + 2  

Y ( T )  = v(0) exp(-hT) 

2 
A =  

with E = q2/2T(0)  being the energy per thermal unit. 
Furthermore, the general solution of (23) is known for this interaction model within 

a certain Hilbert space L 2 ( R d )  with norm IIFI/’=J lF(q ,  7 ) 1 2 / F M ( q )  dq. This solution 
is given in the form of an expansion in terms of the eigenfunctions of the corresponding 
linearised collision integral. The time-dependent coefficients in this expansion satisfy 
a recursive solvable set of coupled non-linear equations. Convergence proofs of these 
series have been given for some classes of initial conditions (Hendriks and Nieuwen- 
huizen 1982). An extensive numerical study has also been performed for both spatially 
uniform (Ernst 1981) and  non-uniform distributions (Barrachina and Garibotti 1986). 

Example. For the particular case of a time-independent elastic force a(r ,  t )  = -w ’ r+  6, 
the tensor U’ in (17) must be proportional to the identity matrix, U’= -€’I with 6 the 
initial vorticity of the flow (note that for odd dimension det ( U )  = O  and 6 must be 
zero). Equation (17) can be easily solved. We obtain 

P ( t )  =v ’Po( t ) ’+  ([/w)’sin’(wt) (31) 

with 

and the auxiliary Z ( t )  matrix is 

1 
Z ( t )  =p,(t)l+-sin(wt)U. 

w 
(33) 
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Figure 1. Time evolution of ( a )  the density, the temperature a n d  ( b )  the  stretching, for a 
two-dimensional homoenergetic dilatation flow in the presence of an  external elastic force 
a =  - w ' r + b .  The initial vorticity and  stretching are  [=0,010 and  

respectively. 

Thus the homoenergetic dilatation flow in the presence of the elastic force a(r ,  t )  = 
- w 2 r + b  has been completely solved. The time evolution of the density and the 
temperature of a two-dimensional gas is shown in figure l ( a ) .  The mean stretching 

is displayed in figure l (6) .  An oscillating behaviour, which becomes a sharp pulsation 
for certain characteristic initial conditions, is obtained. In the absence of vorticity in 
the initial state, i.e. U = 0, the solution diverges in a finite time. Actually, for irrotational 
initial conditions (Nikolskii 1964, Cornille 1985, 1986), purely repulsive or attractive 
time-independent elastic forces cause the gas to expand or collapse respectively. 
Cornille (1985) studied a non-rotating gas on a time-dependent elastic force. By 
coupling two circular functions, which made the force alternatively attractive and  
repulsive, he found an  oscillating behaviour of the gas. Here we have shown that a 
similar oscillating behaviour is obtained with a simpler time-independent elastic force 
when the initial condition is less restrictive than that used by Cornille (1985). 
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